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In this paper, a novel analytical approximation to the nonlinear Duffing-harmonic oscilla-
tor is presented. The variational iteration method (VIM) is used to obtain some accurate
analytical results for frequency. The accuracy of the results is excellent in the whole range
of oscillation amplitude variations.
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1. Introduction

Consider a nonlinear oscillator modeled by the following governing nonlinear differential equation [1]:
d2u

dt2 þ
u3

1þ u2 ¼ 0; uð0Þ ¼ A;
du
dt
ð0Þ ¼ 0 ð1Þ
For small values of parameter u, the governing Eq. (1) is that of a Duffing-type nonlinear oscillator, i.e., d2u
dt2 þ u3 ffi 0, while for

large values of u the equation approximates that of a linear harmonic oscillator, i.e., d2u
dt2 þ u ffi 0. Hence, Eq. (1) is called the

Duffing-harmonic oscillator [1].
Due to the highly nonlinearity of differential Eq. (1), no exact analytical solution has been presented for it in the literature.

However, researchers have been concentrated on approximate analytical techniques for this equation. There are many ap-
proaches for approximating solutions of the Duffing-harmonic oscillator. The most common method is the harmonic balance
method [2]. By applying the method of harmonic balance (HB) [3], the angular frequency is obtained as [1]
x2 ¼ 3
4

A2 1þ 3
4

A2
� ��1

ð2Þ
Using the energy balance method, Ozis� and Yıldırım [4] obtained the angular frequency in the following form
x2 ¼ 1� 2

A2 ln
1þ A2

1þ A2

2

 !
ð3Þ
Assuming a single-term solution and applying the Ritz procedure [5], Tiwari et al. [6] obtained an approximate frequency in
the following form
x2 ¼ 1þ 2

A2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p � 1

 !
ð4Þ
. All rights reserved.
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Using the homotopy perturbation method (HPM), He [7] obtained the angular frequency of Eq. (1). The first-order approx-
imation of HPM gives a frequency–amplitude relation identical with those of HB solution, presented in Eq. (2). It is noted that
the exact frequency of Eq. (1) is obtained if one can integrate the following equation [8]
xe ¼
p
2

Z p=2

0

A2 cos2 hdhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 cos2 hþ ln 1� A2 cos2 h=1þ A2

� �r
0BB@

1CCA
�1

: ð5Þ
To obtain an accurate analytical solution for frequency–amplitude relation of the Duffing-harmonic oscillator, this paper
employs He’s variational iteration method [9] which is a powerful mathematical tool for various kinds of nonlinear
problems.

2. Variational iteration method

The principles of the VIM and its applicability for various kinds of nonlinear differential equations are given in [9–12]. The
VIM can lead to convenient approximate solutions to all kinds of nonlinear equations with simple solution procedure. To
illustrate the basic idea of the method, we consider the following general nonlinear system:
L½uðtÞ� þ N½uðtÞ� ¼ gðtÞ; ð6Þ
where L is a linear operator, N is a nonlinear operator and g(t) is a given continuous function. The basic character of the meth-
od is to construct a correction functional for the system as follows:
unþ1ðtÞ ¼ unðtÞ þ
Z t

0
kðsÞ LunðsÞ þN~unðsÞ � gðsÞ½ �ds; ð7Þ
where k is a Lagrange multiplier, which can be optimally determined via variational theory. Also, un is the nth approximate
solution and ~un represents a restricted variation, i.e., d~un ¼ 0.

3. Implementation of the VIM

The governing Eq. (1) can be rewritten in the form
ð1þ u2Þ d
2u

dt2 þ u3 ¼ 0: ð8Þ
Assuming
X2 ¼ w; ð9Þ
one can write
d2u

dt2 þX2u ¼ F½u�; ð10Þ
where
F½u� ¼ �u2 d2u

dt2 � u3 þ wu: ð11Þ
The correction functional can be constructed in the following form
unþ1ðtÞ ¼ unðtÞ þ
Z t

0
kðsÞ d2unðsÞ

ds2 þX2unðsÞ � eF½unðsÞ�
( )

ds: ð12Þ
eF½un� is considered as a restricted variation, i.e., deF½un� ¼ 0. Calculating the variation of Eq. (12) and noting that deF½un� ¼ 0, the
following stationary conditions is obtained:
d2k
ds2 ðsÞ þX2kðsÞ ¼ 0;
kðtÞ ¼ 0;
1� dk

ds ðtÞ ¼ 0:

8><>: ð13Þ
The Lagrange multiplier, therefore, can be easily identified as
kðsÞ ¼ 1
X

sin Xðs� tÞ: ð14Þ
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On the other hand, by taking into consideration the relation
Z t

0
sin Xðs� tÞ d2unðsÞ

ds2 þX2unðsÞ
( )

ds ¼ �XunðtÞ þXunð0Þ cos Xt þ dun

dt
ð0Þ sin Xt; ð15Þ
Eq. (12) can be rewritten as
unþz1ðtÞ ¼ unð0Þ cos Xt þ dun

dt
ð0Þ sin Xt

X
� 1

X

Z t

0
sin Xðs� tÞ F½unðsÞ�f gds: ð16Þ
Considering the initial conditions u(0) = A and du
dt ð0Þ ¼ 0, the correction functional can be further simplified as follows:
unþ1ðtÞ ¼ A cos Xt � 1
X

Z t

0
sin Xðs� tÞ F½VnðsÞ�f gds: ð17Þ
As initial guess, u0(t) can be considered as follows:
u0ðtÞ ¼ A cos Xt: ð18Þ
Expanding F[u0(t)], we have:
F½u0ðtÞ� ¼
3A3

4
ð1�X2Þ � wA

" #
cos Xt þ A3

4
ð1�X2Þ

" #
cos 3Xt: ð19Þ
By taking into consideration the relation
1
X

Z t

0
sin Xðs� tÞ cos nXsf gds ¼

cos nXt�cos Xt
X2ðn2�1Þ ; n–1;

t sin Xt
�2X ; n ¼ 1:

(
ð20Þ
To avoid secular terms in the next iterations, the coefficient of the cosXt in F[un(t)] should be vanished. It follows that
w ¼ 3A2ð1�X2Þ
4

: ð21Þ
From Eq. (9) the first approximation of the frequency (i.e., X1) is obtained as follows:
X2 ¼ X2
0 ¼

3
4

A2 1þ 3
4

A2
� ��1

: ð22Þ
This frequency is the same as those obtained using HB and HPM method. From Eqs. (17) and (20) for n = 1, first-order approx-
imate solution is obtained as:
u1ðtÞ ¼ A cos Xt þ A3ð1�X2Þðcos 3Xt � cos XtÞ
32X2 ; ð23Þ
where frequency X is listed in Eq. (20), and therefore:
F½u1ðtÞ� ¼
3B3

4
ð1�X2Þ þ B2C

4
ð3� 11X2Þ þ BC2

4
ð6� 19X2Þ � wB

" #
cos Xt

þ B3

4
ð1�X2Þ þ 3C3

4
ð1� 9X2Þ þ B2C

2
ð3� 11X2Þ � wC

" #
cos 3Xt

þ BC
4
ð3C � 19CX2 þ 3B� 11BX2Þ

� �
cos 5Xt þ BC2

4
ð1� 19X2Þ

" #
cos 7Xt þ C3

4
ð1� 9X2Þ

" #
cos 9Xt; ð24Þ
where
B ¼ A 1þ A2ð1�X2Þ
32X2

h i
;

C ¼ A3ð1�X2Þ
32X2 :

ð25Þ
Avoiding the secular term in the next iteration, needs:
w ¼ A2ð1�X2Þ
2048X4 ð15A4 � 80A2 þ 1536ÞX4

h
�ð18A4 þ 48A2ÞX2 þ 3A4

i
: ð26Þ
Substitution of Eq. (26) into Eq. (9) results in the second approximate of the frequency (i.e., X2) as:
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X2 ¼ A2ð1�X2Þ
2048X4 ð15A4 � 80A2 þ 1536ÞX4

h
�ð18A4 þ 48A2ÞX2 þ 3A4

i
: ð27Þ
From Eqs. (17) and (20) the second-order approximate solution is given by:
u2ðtÞ ¼ A cos Xt þ B3

4
ð1�X2Þ þ 3C3

4
ð1� 9X2Þ þ B2C

2
ð3� 11X2Þ � wC

" #
ðcos 3Xt � cos XtÞ

8X2

þ BC
4
ð3C � 19CX2 þ 3B� 11BX2Þ

� �
ðcos 5Xt � cos XtÞ

24X2 þ BC2

4
ð1� 19X2Þ

" #
ðcos 7Xt � cos XtÞ

48X2

þ C3

4
ð1� 9X2Þ

" #
ðcos 9Xt � cos XtÞ

80X2 : ð28Þ
In the same way by calculating w from the coefficient of cos Xt in F[u2(t)], the third approximate of the frequency X3 can be
obtained as:
X2 ¼ A2ð1�X2ÞðD1 þ D2Þ
X16D3

; ð29Þ
where D1, D2 and D3 are as presented in the following
D1 ¼ 10�7 ð�0:016A24 � 0:117A22ÞX2
n

þ ð4:53A22 þ 0:281A24 þ 12:9A20ÞX4 þ ð72:2A22 � 2:67A24 � 535A18

� 459A20ÞX6 þ ð6700A20 þ 617A22 þ 18700A18 þ 1450A1615:1A24ÞX8
o
þ 10�4 ðf � 3:11A22 � 15:6A16 þ 255A14

� 5:33A24 � 521A20ÞX10 þ ð9:64A22 þ 235A20 � 5100A12 þ 1960A18 þ 0:123A24ÞX12 þ ð�638A20 � 0:191A24

� 19:1A22 � 8130A18 � 230A10 � 28000A16 þ 31900A14 þ 134000A12ÞX14
o
;

D2 ¼ ð�71:6A10 þ 0:107A20 þ 118A8 þ 11:9A16 þ 1:93A18 � 119A12 � 0:76A14 þ 0:003A22ÞX16 þ ð�0:002A22 � 1290A8

� 25:7A16 � 426A12 � 1580A6 þ 984A10 � 0:112A20 � 46:1A14 � 2:69A18ÞX18 þ ð20600A6 þ 1280A8 þ 28:9A16

þ 118A14 � 3930A10 � 555A12 þ 2:16A18 þ 0:072A20 þ 0:001A22ÞX20 þ ð7240A8 � 0:026A20 � 46000A6 þ 247A12

� 0:0003A22 � 108A14 þ 16:3A16 þ 5200A10 � :939A18 � 99800A4 þ 18400A2ÞX22;

D3 ¼ ð6A8Þ � ð780A6 þ 67A8ÞX2 þ ð168 � A8 þ 6820A6 þ 3840A4ÞX4 � ð153A8 þ 11300A6 þ 79360A4 � 122880A2ÞX6

þ ð49A8 þ 5260A6 þ 75520A4 � 122880A2 � 3932160ÞX8:
4. Results and discussions

To show the accuracy of the proposed method, the approximate frequencies computed by Eqs. 22,27 and 29 are compared
with those obtained by other researchers. Table 1 shows the result for various amplitudes. From Table 1 it can be observed
that Eqs. (27) and (29) yield excellent approximate frequencies for both small and large amplitudes.

Figs. 1–3 have been presented to compare the obtained analytical results of this paper from variational iteration method
with numerical results obtained by Runge–Kutta method. From these figures, it is obvious that the results of this paper are
nearly identical with those given by numerical method.
ison of various approximate angular frequencies.

A

0.01 0.1 1 10 100

s [1], He [7] (Eq. (2)) 0.00866 0.08628 0.65465 0.99340 0.99993
d Yıldırım [4] (Eq. (3)) 0.00806 0.08627 0.65164 0.99314 0.99993
et al. [5] (Eq. (4)) 0.00837 0.08627 0.64359 0.99095 0.99990

study
(22)) 0.00866 0.08628 0.65465 0.99340 0.99993
(27)) 0.00849 0.08452 0.62636 0.99999 1.00000
(29)) 0.00847 0.08439 0.64154 0.99093 0.99992

olution [8] 0.00847 0.08439 0.63678 0.99092 0.99990



Fig. 1. Comparison of approximate solutions with exact solution for A = 0.01.

Fig. 2. Comparison of approximate solutions with exact solution for A = 0.1.

Fig. 3. Comparison of approximate solutions with exact solution for A = 10.
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5. Conclusions

In this study, analytical solutions for frequency–amplitude relations of the Duffing-harmonic oscillator were presented
using variational iteration method. The approximate analytical frequencies are valid for the whole range of oscillation
amplitudes. The performance of the method was compared with other approximate analytical methods. Results reveal
that this method can be considered as viable alternative for conventional methods to solve highly nonlinear oscillatory
systems.
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